
Contiguitas: The Pursuit of Physical Memory Contiguity in
Datacenters

Kaiyang Zhao
Carnegie Mellon University

kaiyang2@cs.cmu.edu

Kaiwen Xue
Carnegie Mellon University
kaiwenx@andrew.cmu.edu

Ziqi Wang
Carnegie Mellon University
ziqiw@andrew.cmu.edu

Dan Schatzberg
Meta Platforms, Inc.

dschatzberg@meta.com

Leon Yang
Meta Platforms, Inc.
lnyng@meta.com

Antonis Manousis
Meta Platforms, Inc.

amanousis@meta.com

Johannes Weiner
Meta Platforms, Inc.
jweiner@meta.com

Rik van Riel
Meta Platforms, Inc.
riel@meta.com

Bikash Sharma
Meta Platforms, Inc.
bsharma@meta.com

Chunqiang Tang
Meta Platforms, Inc.
tang@meta.com

Dimitrios Skarlatos
Carnegie Mellon University

dskarlat@cs.cmu.edu

ABSTRACT
The unabating growth of the memory needs of emerging datacenter
applications has exacerbated the scalability bottleneck of virtual
memory. However, reducing the excessive overhead of address
translation will remain onerous until the physical memory contigu-
ity predicament gets resolved. To address this problem, this paper
presents Contiguitas, a novel redesign of memory management in
the operating system and hardware that provides ample physical
memory contiguity. We identify that the primary cause of memory
fragmentation in Meta’s datacenters is unmovable allocations scat-
tered across the address space that impede large contiguity from
being formed. To provide ample physical memory contiguity by
design, Contiguitas first separates regular movable allocations from
unmovable ones by placing them into two different continuous
regions in physical memory and dynamically adjusts the boundary
of the two regions based on memory demand. Drastically reduc-
ing unmovable allocations is challenging because the majority of
unmovable pages cannot be moved with software alone given that
access to the page cannot be blocked for a migration to take place.
Furthermore, page migration is expensive as it requires a long
downtime to (a) perform TLB shootdowns that scale poorly with
the number of victim TLBs, and (b) copy the page. To this end, Con-
tiguitas eliminates the primary source of unmovable allocations by
introducing hardware extensions in the last-level cache to enable
the transparent and efficient migration of unmovable pages even
while the pages remain in use.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0095-8/23/06. . . $15.00
https://doi.org/10.1145/3579371.3589079

We build the operating system component of Contiguitas into
the Linux kernel and run our experiments in a production environ-
ment at Meta’s datacenters. Our results show that Contiguitas’s OS
component successfully confines unmovable allocations, drastically
reducing unmovable 2MB blocks from an average of 31% scattered
across the address space down to 7% confined in the unmovable re-
gion, leading to significant performance gains. Specifically, we show
that for three major production services, Contiguitas achieves end-
to-end performance improvements of 2-9% for partially fragmented
servers, and 7-18% for highly fragmented servers, which account
for nearly a quarter of Meta’s fleet. We further use full-system simu-
lations to demonstrate the effectiveness of the hardware extensions
of Contiguitas. Our evaluation shows that Contiguitas-HW enables
the efficient migration of unmovable allocations, scales well with
the number of victim TLBs, and does not affect application perfor-
mance. We are currently in the process of upstreaming Contiguitas
into Linux.

CCS CONCEPTS
• Software and its engineering→ Operating systems; Virtual
memory; • Computer systems organization→ Architectures.

KEYWORDS
Datacenters; Operating Systems; Memory Management; Virtual
Memory

ACM Reference Format:
Kaiyang Zhao, Kaiwen Xue, Ziqi Wang, Dan Schatzberg, Leon Yang, Anto-
nis Manousis, Johannes Weiner, Rik van Riel, Bikash Sharma, Chunqiang
Tang, and Dimitrios Skarlatos. 2023. Contiguitas: The Pursuit of Physi-
cal Memory Contiguity in Datacenters. In Proceedings of the 50th Annual

International Symposium on Computer Architecture (ISCA ’23), June 17–

21, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3579371.3589079

https://orcid.org/0000-0002-7856-4274
https://orcid.org/0009-0002-5311-2826
https://orcid.org/0000-0003-0067-0701
https://orcid.org/0009-0000-0945-4429
https://orcid.org/0009-0006-5702-7687
https://orcid.org/0009-0003-8130-4435
https://orcid.org/0009-0005-6697-8276
https://orcid.org/0009-0009-8010-3635
https://orcid.org/0009-0001-8347-8207
https://orcid.org/0009-0004-0133-4800
https://orcid.org/0000-0002-0289-5499
https://doi.org/10.1145/3579371.3589079
https://doi.org/10.1145/3579371.3589079
https://doi.org/10.1145/3579371.3589079

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Zhao et al.

1 INTRODUCTION
Memory capacity has increased dramatically over the last decades,
yet modern operating systems have throughout stuck with a small
base page size. This divergence has resulted in excessive manage-
ment overhead for memory-intensive applications. In particular,
virtual memory implementations are plagued by expansive page
table trees, and a corresponding appetite for hardware TLB capacity
that is difficult to satiate.

Even with architectural innovations such as larger and multi-
level TLBs and page walk caches [4, 14–16, 21–24, 29, 60, 82], appli-
cations today suffer a substantial performance penalty due to TLB
misses. Google’s internal profiling revealed that approximately 20%
of cycles are stalled on TLBmisses [48]. Unfortunately, this problem
is only bound to get worse due to: i) the inherent hardware limits of
TLB scaling, already surpassing L2 cache latencies [112], ii) terabyte-
scale memory capacity through technologies like CXL [56, 93], iii)
additional levels of page tables [51], iv) the increase of memory-
intensive applications, and v) upcoming confidential computing
platforms that place security checks at page granularity during
address translation [10, 53].

A large body of prior research has focused on reducing the
address translation overhead [1–3, 14, 16, 20, 23, 30, 36, 45, 48,
60, 62, 71, 77, 83, 92, 95, 96, 98–100, 108, 115]. Conceptually, we
can separate prior work based on the amount of physical memory
contiguity required and how it is exploited. On the one hand, earlier
works propose leveraging physical memory contiguity to back the
application dataset [4, 16, 36, 37, 60, 61, 82]. These approaches
create range-based translations, similar to segments, that map large
contiguous regions of virtual memory to equally large contiguous
physical memory. Their goal is to ultimately reduce the number of
TLB entries needed. However, they face the fundamental challenge
that it is very hard to create multi-gigabyte contiguous physical
address ranges to cover the complete application dataset.

On the other hand, another line of research has explored alter-
native page table structures such as hashed page tables [32, 47,
58, 59, 95, 99, 101, 115]. Indeed, recent work [95, 98, 99, 115] has
solved some of their traditional shortcomings [15, 33, 41, 49, 50].
Such solutions aim to replace sequential multi-level page tables
and drastically reduce the cost of page walks by accelerating page
table accesses. Notably, they relax the physical memory contiguity
requirements to apply not on the whole dataset, but only on the
page table organization. However, they impose strict requirements
for physical memory contiguity availability on the critical path
of page table creation. As a result, such approaches still remain
challenging to adopt. Several other architectural extensions that
implicitly rely on contiguity [44, 72, 82, 108, 114] are hindered by
the same fundamental challenge.

Today’s operating systems, such as Linux, have mostly relied
on 2MB huge pages to land performance improvements. The pri-
mary mechanism to leverage huge pages is Transparent Huge Pages
(THP) [105] that opportunistically try to provide 2MB pages. Un-
fortunately, in today’s systems, finding physical contiguity even
for 2MB pages is often hard due to memory fragmentation [38,
40, 43, 64, 77, 78, 83]. THPs have also been under scrutiny due to
their performance implications such as latency spikes and mem-
ory bloating [9, 25, 26, 38, 43, 66, 76]. Alternative approaches, such

as userspace allocators [48, 67, 68] still rely on the OS to provide
physical contiguity and larger mappings.

Addressing excessive memory management overhead will re-
quire a fundamental shift towards larger page granularities. How-
ever, fragmentation remains as the primary obstacle. Illumina-
tor [78] is a major prior work that tries to address fragmentation.
Within a 2MB block, it prevents mixing unmovable allocations and
movable ones that the kernel can move on-demand. This work,
while innovative, has some key limitations.

First, the fundamental problem of unmovable allocations, i.e.,
that the OS cannot move them after their allocation, remains. Sec-
ond, avoiding mixing movable and unmovable allocations within
2MB blocks still fragments the address space, prevents large con-
tiguous regions from being formed, and consequently blocks larger
translations. This is because it limits the maximum available con-
tiguity to at most 2MB. For example, a single unmovable 4KB
page can render a 1GB region unmovable; as a result just 0.19% of
2MB unmovable allocations can fragment the whole of memory ir-
recoverably. Third, the effectiveness of defragmentation is severely
hindered by the presence of unmovable allocations [114]. Overall,
despite significant efforts in virtual memory research, eliminating
the address translation overhead will remain onerous in real world
environments until the physical memory contiguity predicament
gets resolved.

1.1 This Paper: Ample Physical Memory
Contiguity by Design.

In this work, we start with a detailed investigation of physical mem-
ory contiguity at hyperscale across Meta’s datacenters. We sample
servers across the fleet and show that 23% of servers do not even have

physical memory contiguity for a single 2MB huge page. We also
find that it is practically impossible to dynamically allocate 1GB
pages in a production environment. Pertinently, fragmentation af-
fects all servers as there is little to no correlation between memory
contiguity availability and server up-time. In practice, servers can
quickly get heavily fragmented within the first hour after boot-up
while the mean server uptime is multiple days or weeks—turning
memory fragmentation into a major challenge. Finally, our study ex-
poses unmovable memory allocations as the root cause for the lack
of physical memory contiguity. In particular, we identify several
sources of unmovable allocations, including networking buffers,
slab, filesystem, and page tables.

To address these issues, we introduce Contiguitas with the goal of
eliminating fragmentation due to unmovable allocations. Contigui-
tas separates movable allocations from unmovable ones by placing
them into two different continuous regions and dynamically adjusts
the boundary of the two regions based on memory demand. To
avoid wasting memory in the unmovable region, Contiguitas solves
two problems: i) how to dynamically resize the unmovable region
and place unmovable allocations; and ii) how to drastically reduce
unmovable allocations. For the first problem, Contiguitas performs
resizing by tracking the demand for unmovable allocations. More-
over, it reduces internal fragmentation of the unmovable region by
differentiating different types of unmovable allocations.

For the second problem, Contiguitas focuses on unmovable allo-
cations that cannot be moved with software alone because access

Contiguitas: The Pursuit of Physical Memory Contiguity in Datacenters ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

to the page cannot be blocked for a migration to take place. At
Meta, networking allocations account for 73% of unmovable pages
(Section 2.5). We expect unmovable allocation to become an increas-
ingly bigger problem. This is because of new I/O technologies such
as kernel-bypass and RDMA for networking and storage, GPUs,
and other accelerators that heavily really on unmovable pages.

To this end, Contiguitas introduces a set of surgical hardware
extensions in the last-level cache (LLC) that enable the transparent
migration of unmovable pages while in use. Contiguitas’s design
builds off of two ideas: First, Contiguitas introduces migration
mappings in the LLC, enabling hardware to redirect traffic to the
appropriate cache line of each page based on the progress of the mi-
gration. Second, Contiguitas relaxes the TLB shootdown operation
from being synchronous and requiring acknowledgements from all
victim TLBs to a local TLB invalidation that can be performed by
each core independently and in a lazy manner. Naturally, movable
page migrations can also benefit from this hardware support.

We build the OS component of Contiguitas into the Linux kernel
and run our experiments in Meta’s production environment. Our
results show that this component successfully confines unmovable
allocations, drastically reducing unmovable 2MB blocks from an
average of 31% scattered across the address space down to 7% con-
fined in the unmovable region, leading to significant performance
gains. Specifically, we show that for three major production ser-
vices, Contiguitas achieves performance improvements between
2-9% for partially fragmented servers that represent the majority
of the servers, and between 7-18% for highly fragmented servers
representative of nearly a quarter of the fleet at Meta. Notably,
Contiguitas’s contiguity gains enable Web, one of Meta’s largest
services, to dynamically allocate 1GB huge pages, leading to a 7.5%
performance win that is unattainable with 2MB pages alone. We
use full-system simulations to demonstrate the effectiveness of the
hardware extensions of Contiguitas. Our evaluation shows that
Contiguitas-HW enables the efficient migration of unmovable al-
locations while scaling the number of victim TLBs and does not
affect application performance. We are currently in the process of
upstreaming Contiguitas into Linux.

2 MEMORY CONTIGUITY CHALLENGES AND
OPPORTUNITIES IN DATACENTERS

In this section, we first provide a brief overview of memory man-
agement of modern operating systems. Then we showcase the
challenges and opportunities of memory contiguity across Meta’s
datacenters through a detailed study of i) memory capacity and
TLB trends, ii) performance implications of address translation, iii)
memory fragmentation, and iv) unmovable allocations and their
sources.

2.1 Memory Management
Multiple Page Sizes.Modern operating systems, such as Linux,
managememory in small 4 KB page granularity. The primary reason
behind this decision is to reduce memory bloating and expensive IO
operations during paging. However, 4 KB pages cause significant
address translation overhead due to the limited capacity of the TLBs
and expensive page walks in the event of a TLB miss. To that end,
huge pages of 2MB and 1GB have been retrofitted in the kernel

with additional hardware support. Huge pages reduce the number
of translation entries and further shorten page walks.

Linux has two primary mechanisms to allow applications to
leverage huge pages. The HugeTLB subsystem allows a system
administrator to allocate a certain number of persistent huge pages
which can then be explicitly mapped by userspace applications.
HugeTLB requires careful coordination between system adminis-
trators and application developers to ensure a proper number of
huge pages are available.

Alternatively, Transparent Huge Pages (THP) [105] can be used
to allocate huge pages transparently to the application. THPs only
support 2MB pages and opportunistically assign huge pages to ap-
plications, either in page fault handling or through background page
promotion. The OS forms huge pages on top of contiguous physical
memory regions that it keeps on free lists. However, userspace
memory pages, kernel structures, and other sources can cause a
fragmented physical address space with no huge pages available.
Memory Fragmentation.Memory fragmentation can be allevi-
ated by memory compaction, also known as defragmentation. Mem-
ory compaction [28] tries to consolidate physical pages by moving
them around, freeing up contiguous memory areas for huge page
allocations. During movement, the page becomes temporarily un-
available until the page is copied to the new location and the new
mapping is established.
Page Migration and TLB shootdowns. Figure 1 shows the pro-
cess of page migration. A translation for a page is cached in the
TLBs. However, in contemporary processors TLBs are not cache-
coherent. Hence, the OS needs to invalidate all potential victim
TLBs of cores that might be caching the translation. First, in Step 1
the OS running on top of the initiator core clears the present bit of
the page table entry of the page under migration. Then, the initia-
tor invalidates the entry from the local TLB and initiates the TLB
shootdown procedure, in Step 2 . Specifically, the OS sends inter-
processor interrupts (IPIs) in Step 3 to all remote victim cores. Each
core receiving an IPI invokes an interrupt handler that flushes their
private TLB, shown in Step 4 , and then sends an acknowledgment
in Step 5 . After the initiator receives all the required acknowl-
edgments, it performs the copy of the page in Step 6 . Finally, it
updates the PTE in Step 7 .

Time

Initiator

Page
Copy

TLB
Shootdown

Remote0
RemoteN

Invalidate TLB0
IPIs Acks4

3 5

1 6
Clear
PTE

Update
PTE2 7

Invalidate TLBN

Figure 1: Page migration procedure.

TLB shootdowns are very costly as they scale poorly with the
number of involved cores and may require several thousands of
cycles to complete [7, 8, 12, 17, 63, 63, 90, 109]. Upcoming hard-
ware [6, 11, 54] aims to reduce the TLB invalidation overhead,
but a page still becomes unavailable during migration. The same
steps are followed by processors that make use of IOMMUs with
IOTLBs [5, 55, 80] and NICs with private TLBs [84, 104].
Unmovable Allocations. An impediment to memory compaction
is unmovable allocations that cannot be migrated. Unmovable al-
locations exist across different operating systems, called wired

ISCA ’23, June 17–21, 2023, Orlando, FL, USA. Zhao et al.

Gen 1 Gen 2 Gen 3 Gen 4 Gen 5
Hardware Generations

2x

4x

6x

8x

Re
la

tiv
e

Ca
pa

cit
y Main Memory

20%

40%

60%

80%

TL
B

Co
ve

ra
ge

TLB 4KB TLB 2MB

Figure 2: Memory and TLB coverage of computing hardware
across generations.

allocations in FreeBSD, and non-paged in Windows [74, 91, 114].
While there are many sources of unmovable allocations such as
slab, page tables, and other kernel structures, they can be catego-
rized into two types. The first type of unmovable allocations are
formed because the kernel opts for faster translation of kernel ob-
jects through a simple offset into a linear map [107]. Addresses to
these data structures may be stored all over memory. As a result,
such data structures cannot be moved.

Other types of unmovable allocations are related to I/O and the
IOMMU, including memory for kernel-bypass networking and stor-
age, GPUs, accelerators, and in general operations that mark pages
as busy and thus unmovable. Such allocations are impossible to
move with software alone. The reason is that the software cannot
atomically perform both the translation update and the page copy.
Hence, the only way for software to migrate a page without poten-
tial spurious writes to the page taking place during migration is to
first block access to the page, perform the copy, and then update the
translation. However, access to such unmovable pages cannot be
blocked as incoming operations from a device need to be serviced.
Even if access to the page could be blocked, page migration itself
is expensive because it requires a long downtime to (a) perform a
TLB shootdown procedure that scales poorly with the number of
victim TLBs, and (b) copy the page.

2.2 Memory Capacity and TLB Trends
Trends in Meta’s hardware show increases in memory capacity
without comparable increases in TLB capacity. This discrepancy
puts increased emphasis on contiguity availability to reduce address
translation overheads.

Figure 2 shows the relative increase of memory capacity and TLB
coverage of computing infrastructure across hardware generations
in Meta’s datacenters. The x-axis shows different hardware genera-
tions. The Gen-1 hardware is near its end of life while Gen-4 and
Gen-5 are expected to be deployed in the near future. We normalize
the results based on the first generation. Memory capacity is bound
to increase by almost 8×. However, the number of TLB entries
and consequently TLB coverage remain stagnant. Specifically, the
number of TLB entries has steadily remained in the range of a few
thousands in the last few generations. As a result, TLB coverage
with contemporary 4 KB pages, and even larger 2MB pages will be
significantly insufficient. 1GB pages do provide sufficient coverage
that is larger than the main memory capacity of Gen-5 hardware.
Reducing translation overheads will require ever larger page sizes,
and hence contiguity, in hand with techniques to reduce page walk
latency.

4KB 2MB
Web

1GB 4KB
Cache A

2MB 4KB
Cache B

2MB 4KB
Ads

2MB0%

5%

10%

15%

20%

Pa
ge

 W
al

k
Cy

cle
s %

Data Instructions

Figure 3: Percentage of cycles lost due to page walks.

2.3 Lost Cycles Due to Lack of Contiguity
To quantify the potential of memory contiguity we select a few
representative services across Meta’s fleet and measure the im-
pact of contiguity. We perform measurements using: i) only 4 KB
pages, ii) 2MB pages, iii) 2MB and 1GB. For 2MB we use THP and
further reserve huge pages through HugeTLB [106] for services
that have already been optimized to support HugeTLB. To leverage
1GB pages we solely rely on HugeTLB. We focus the evaluation on
the most widely used machine type which has 64GB memory. At
Meta, services are deployed directly on Linux servers within con-
tainers. Furthermore, services are optimized heavily to fit within
the available memory. Hence, the results provide a lower bound of
the potential address translation overhead and gains from larger
page sizes—we expect such overheads to be further exacerbated as
memory capacity increases.

Figure 3 shows page walk cycles as percentages of the total
cycles, due to Data and Instructions, using performance counters
of production workloads. For Data we show the aggregate of loads
and stores. We observe that page walk cycles can account for close
to 20% of total cycles in Meta’s datacenters. Memory contiguity
has the potential to significantly alleviate TLB overheads of both
instructions and data. Focusing on Web, one of the largest services
within Meta, we see that 2MB huge pages can halve the number of
instruction page walk cycles. Notably, while 2MB pages offer little
improvement for data page walk cycles, 1GB huge pages have a
major impact by reducing such cycles from 14% down to 8%.

2.4 Memory Fragmentation
Memory fragmentation prevents the OS from creating large con-
tiguous regions. To quantify fragmentation across Meta’s fleet, we
randomly sample tens of thousands of 64GB servers in produc-
tion independently of workloads and perform a full scan of each
server’s physical memory. Figure 4 shows the cumulative distri-
bution function (CDF) of memory contiguity as a percentage of
free memory at the 2MB, 4MB, 32MB and 1GB allocation levels.
Servers having less than 1GB of free memory are filtered out. We
observe that memory fragmentation is severe across the fleet i.e.,
23% of the servers do not have enough contiguity for even a single
2MB allocation. This number increases to 59% for 32MB alloca-
tions. Dynamically allocating 1GB pages is practically impossible
in production.

Correlation With Uptime. It is commonly assumed that memory
fragmentation is correlated with server up-time [78, 114]. In partic-
ular, freshly brought-up servers are expected to have an abundance

Contiguitas: The Pursuit of Physical Memory Contiguity in Datacenters ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

0% 5% 10% 15% 20% 25% 30%
Free memory %

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

CD
F

of
 S

er
ve

rs

2MB
4MB
32MB
1GB

Figure 4: Contiguity availability as the percentage of free
memory.

of available memory contiguity that slowly deteriorates as work-
loads execute. Interestingly, our analysis showed there is little to
no correlation between memory contiguity availability and server
uptime, with the Pearson correlation coefficient between server
uptime and the number of free 2MB pages being only 0.00286. We
further looked into servers with only a few hours of uptime and dis-
covered that the correlation still remained weak, with a coefficient
of 0.16. Finally, we performed a set of experiments that indicated
that servers can get highly fragmented within the first hour of
running workloads. Given that the mean uptime of Meta’s servers
is multiple days or weeks, memory fragmentation affects nearly all
servers.

2.5 Unmovable Memory Allocations
Despite high amounts of fragmentation, the kernel could succeed
in allocating huge pages by compacting allocated pages into fewer
contiguous regions. Unmovable allocations inherently limit mem-
ory contiguity as they impede memory compaction. To quantify
unmovable allocations we follow the same process for studying
memory fragmentation. Figure 5 shows the percentage of 2MB
unmovable pages relative to the total memory. As we can see, a
median server has 34% of its memory occupied by unmovable al-
locations. As a result, a significant portion of the memory cannot
be used for huge pages, and forming any larger contiguous regions
(at 4 MB, 32 MB or 1GB) will be even harder. Furthermore, the
variance across machines is a major obstacle for using huge pages.
At Meta it is desirable to treat the servers interchangeably so that a
workload can potentially land on any available server in the fleet. In
practice, for some critical services that depend on the existence of
sufficient huge pages, automatic server reboots are used to resolve
high fragmentation.

Furthermore, we identified that unmovable allocations are scat-
tered across the address space. The median ratio of the number of
unmovable 4 KB pages over the total number of pages is only 7.6%,
but it makes 34% of 2MB pages unmovable, showing that scattering
is greatly exacerbating the unmovable memory issue.

To identify the sources of unmovable allocations, we track all allo-
cations marked as unmovable and backtrace their allocation sources.
Figure 6 shows the breakdown of various sources of unmovable
allocations. Networking-related operations are a major source of
unmovable allocations, accounting for more than 73%. Such alloca-
tions include send and receive buffers maintained by the OS. These
buffers carry the data received or to be sent through the processing
of different layers of the networking stack, from the applications
that own the sockets down to NICs [46]. In Meta’s environment

MB OMB QMB SMB UMB NMMB
B=¤=r¬«´~ ª£=m~¥£±

MKN
MKO
MKP
MKQ
MKR
MKS
MKT
MKU
MKV
NKM

`a
c=

¤
=p

£°
´£

°±

Oj_
Qj_
POj_
Nd_

Figure 5: Distribution of unmovable pages in contiguous
regions of 2MB, 4MB, 32MB, and 1GB.

the number of networking-related pages constantly remains high.
More importantly, we expect unmovable networking allocations
to become an increasingly bigger problem for two reasons. First,
with the adoption of high bandwidth NICs [103] and the increased
number of queues based on the number of cores, the number of
networking allocations are expected to increase drastically. Second,
with kernel bypass and RDMA technologies [34, 42, 73, 85, 117] in
datacenters, networking pages are pinned to memory and remain
unmovable for the lifetime of an application.

MB OMB QMB SMB UMB NMMB
m£°¡£¬²~¥£=¤=r¬«´~ ª£=^ªª¡~²§¬±

k£²µ°©§¬¥ pª~ c§ª£=±·±²£«± m~¥£=²~ ª£± l²¦£°±

Figure 6: Sources of unmovable allocations.

The second source, which accounts for 12%, is related to slab
allocations. The slab allocator is the small object allocator in the
Linux kernel that packs objects in pages obtained from the page
allocator. It is the primary memory source for kernel data structures
which cannot be moved. File systems frequently allocate pages as
buffers for compression and decompression. Page tables are used to
store translation entries from virtual addresses to physical addresses.
About 4% of allocations are related to other sources.

In the future, we expect additional sources of unmovable mem-
ory driven by the increased deployment of heterogeneous hardware
such as GPUs, accelerators, and other devices that rely on unmov-
able allocations. As a result, managing unmovable allocations is
critical for efficient memory management.

3 CONTIGUITAS DESIGN
The goal of Contiguitas is to provide ample physical memory conti-
guity by reducing memory fragmentation due to unmovable allo-
cations. To that end, Contiguitas redesigns memory management
in the OS to confine unmovable allocations and completely sepa-
rate them from movable ones. In addition, Contiguitas drastically
reduces unmovable pages in datacenters. Specifically, Contiguitas
introduces a set of hardware extensions in the last-level cache (LLC)
that enable the transparent migration of unmovable pages while in
use.

3.1 Overview
Figure 7 provides a high level overview of Contiguitas and how it
transforms the physical address space. There are two key design
principles guiding Contiguitas. The first one, is to strictly separate
unmovable from movable allocations using two dedicated regions

	Abstract
	1 Introduction
	1.1 This Paper: Ample Physical Memory Contiguity by Design.

	2 Memory Contiguity Challenges and Opportunities in Datacenters
	2.1 Memory Management
	2.2 Memory Capacity and TLB Trends
	2.3 Lost Cycles Due to Lack of Contiguity
	2.4 Memory Fragmentation
	2.5 Unmovable Memory Allocations

	3 Contiguitas Design
	3.1 Overview
	3.2 Confining Unmovable Allocations
	3.3 Architectural Support for Transparent Page Mobility

	4 Evaluation Methodology
	5 Evaluation
	5.1 End-to-end Performance Impact
	5.2 Unmovable Allocations and Memory Contiguity.
	5.3 Contiguitas-HW Characterization.

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

